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Zero energy divergence of scattering cross sections in two 
dimensions 
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Centre de Recherches sur les Tres Basses TempCratures, CNRS, BP 166 X, 38042 Grenoble 
CCdex, France 

Received 26 July 1985 

Abstract. It has been known for a long time that any attractive two-dimensional potential 
with circular symmetry has a bound state. A simple generalisation of standard scattering 
theory to two dimensions shows that all cross sections diverge at zero energy; furthermore 
a T matrix theory can show that those two results are connected, that they correspond to 
the same kinematical singularity and that they exist for non-circular potentials. 

1. Introduction 

In all standard quantum mechanics textbooks three-dimensional theory is developed, 
because it is realistic; very often one-dimensional examples are treated because they 
are pedagogical. Two-dimensional quantum mechanics is generally ignored, and this 
may be the reason why some peculiarities of it seem to have been overlooked. 
Nevertheless it may be needed for the physics of surfaces, heterojunctions, quantum 
wells and even thin films. 

One result has nevertheless been known for a long time: a potential well of circular 
symmetry always has a bound state if its space integral is negative (Landau and Lifshitz 
1958); the binding energy of such a state varies as exp(-l VI-')  where is proportional 
to the space integral of the potential. Such non-analytical behaviour shows the 
marginality of the two-dimensional case of quantum mechanics, which has also been 
emphasised by the renormalisation group results on Anderson localisation (Abrahams 
et a1 1979). 

A formalism has been developed to describe 2~ scattering events (Stern and Howard 
1967, Lapidus 1982), but it does not yet seem to have been realised that the singularity 
on the bound state has its equivalent for scattering. The main result is the following: 
all cross sections diverge at zero energy, although the phase shift tangent goes normally 
to zero. Nevertheless, the fact that Jost functions cannot be defined in two dimensions, 
if it had been noticed, would have suggested this result. In fact, it will be shown in 
this paper that the bound state marginality and scattering divergence are closely related, 
and that they do not need circular symmetry. 

This paper is organised as follows. In 8 2, two-dimensional Green functions are 
computed and the 2~ scattering formalism is given both for completeness and because 
the phase convention suggested by Green functions is different from the one used by 
previous authors. Then, in § 3, it is shown that, for rapidly decreasing potentials, 
simple equalisation of the logarithmic derivative of the radial part of the wavefunction 
gives the results, and in § 4, a T matrix formalism, invented by Noyes (1965), is used 
for demonstrating generally both the bound state and the scattering results. 
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2. Two-dimensional scattering formalism 

We shall have to discuss solutions of the following Schrodinger equation: 

and to analyse them according to their symmetry. The usual 
decomposition is replaced by a simple Fourier series and, if 
coordinates, we can write 

V ( r ,  e )  = V , ( r )  exp(ip0) 

For a circular potential 

m 

-m 

V,,(r) = 0 

the Schrodinger equation is 

m 

+ ( r ,  e ) =  R , ( r )  exp(iA8). 
-U3 

P # O  
written 

-E(-+---- d2 ’ ”’) R , ( r ) +  V ( r ) R , ( r ) =  ER, ( r ) .  
2m dr2 r dr r2 

With reduced units 

U (  r )  = (2m/ h 2 )  V (  r )  

k 2 =  - ~ * = ( 2 m / h * ) E  = E ‘  

spherical harmonic 
r and 8 are polar 

where k2 will be used for scattering states and K’ for bound states, (3)  becomes 

If one now makes the transformation 

RA ( r )  = xA ( r)r-1’2 

the Schrodinger equation becomes 

x* = 0. 
( A  -;)(A +f) 

r2 

( 3 )  

Here one can see that the centrifugal term is exactly the same as in three dimensions 
if one makes the substitution 

/ = A - ’  2 .  (8) 
In the theory of Jost functions one retains the solution of (7) starting like r’ and 

rejects that starting like r - ’ - ’ ,  but here, for A = 0 or 1 = -: waves, they are both the 
same so now we have the source of the trouble to be described for U waves. 

To build a scattering formalism, it is useful to start by computing the Green function 
of the kinetic energy operator, i.e. to solve 

(V2+ k 2 ) G k ( p )  = 6 ( p )  (9) 

for positive energies and 

(v2- K*)G,(-P) = QJ) (9’) 
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for negative energies. We shall use the Hankel integrals (Watson 1922) 

and 

valid when a > 0, Im( k) > 0, Re(K) > 0; Jn, H f ,  and KO are Bessel functions, Hankel 
functions of the first type and Macdonald functions respectively; in fact (10) and (10’) 
are the same formula, as can be seen from the standard relation (Nikiforov and Ouvarov 
1976): 

K , ( z )  =f.n exp[i(v+l).n/2]Ht(iz). (11) 

Gk(p) = -$HA(kp). (12) 

A Fourier transform of (9) followed by the use of (10) gives 

The asymptotic expansion of (12) for large p gives 

- -f(2.nkp)-’/’ exp[i(kp + .rr/4)] (13) 
while for small distances 

where C, = ey, y being the Euler-Mascheroni constant. The addition formula 
solutions of Bessel equations (Watson 1922) gives, if 

pz  = r2 + rr2 - 2rr’ cos( e - e’) 

where r, = max( r, r’), r< = min( r, r’). 
Similarly, (10’) is solved by 

For large p, it has the asymptotic expansion 

GK(p)-  -~(2TKp)-*/’eXp(-Kp) 

and for small p 

G K ( p ) = - l n ( T ) +  1 . . . .  
2.n 

The addition formula gives here 

14) 

for 

15) 
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where I,,, is the modified Bessel function 

I,( r )  = i-’JV(iz). 

The scattering of a two-dimensional particle by a circular symmetry potential can 
be described by a phase-shift formalism, which will be described both for completeness 
and because the use of the Green function (12) changes the phase convention form 
what has been previously used and makes the formula more similar to those used for 
3~ problems. Writing the Lippmann-Schwinger equation for retarded waves, the 
incoming particle being directed along the x axis 

$ ( r )  = exp(i&x)-ai d2r’HA(klr- r ’ l ) U ( r ’ ) $ ( r ’ )  i 
and using the asymptotic expansion (13), one has for large r 

+ ( r )  -exp(ikx) exp[i(k(r- r ‘ l -  .rr/4)] U ( r ’ ) $ ( r ‘ )  

one defines as usual k‘ as the vector of modulus k parallel to r, and one obtains 

1 
d2r’exp(-ik’ * r ’ ) U ( r ’ ) + ( r ’ ) .  

2(2.rrk)‘12 - exp(ikx) -- exp(-i.rr/4) exp(ikr) f i  
(18) 

If one defines the scattering amplitude f (  0 )  by the boundary condition 

$ ( r ,  6)-exp(ikrcos e)+f(e)r-’12exp[i(kr+n/4)] (19) 

one obtains the formula 

d2r’ exp( -ik‘ - r ’ )  U( r ’ ) $ (  r ’ ) .  f(@) = - 2(2.rrk)’12 ‘ J  
If the potential is of circular symmetry, + ( r )  can be taken as the sum of solutions 

for different angular momentum A: 
m 

$( r, e)  = iARA( e) exp(iA8) 
A=-m 

where each RA verifies the Schrodinger equation (6). When r is big enough for U ( r )  
to be negligible, (6) becomes the standard Bessel equations whose solutions are the 
Bessel and Neumann functions of asymptotic expansion 

( k r )  - (2/ Tkr)”* COS( kr - &TA -aV)  

NA ( k r )  - (2,’ .rrkr)’12 sin( kr -+TA -an). 

One writes for RA(r) the following expansion: 

&(r )  =AA(COS s ~ J ~ ( k r ) - S i n  &NA(kr)) 

- AA (2/ .rrkr)’12 cos( kr -$TA - a.rr + sA ) 

and for the incident wave the expansion 

exp(ikr cos e) = iAJA(kr) exp(iA0) 
A 

- (2/.rrkr)’12 iA cos(kr-$?rA - 4 ~ )  exp(iA0). (23) 
A 
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It remains to introduce (22) and (23) in (19), to use the exp(-ikr) term to obtain 

AA = exp(i8,) (24) 

and the exp(ikr) term to obtain 

f(0)  = (2/.rrk)”* c exp(i8,) sin SA exp(iA8). 
A 

Now we have the differential cross section 

2 
Vk A 

a( e) = 1 f (  e)[’ = - IZ exp(i6,) sin SA exp(iA8) 

and by integration over 0, the total cross section 

4 
k r  

8=-Csin2S.  

As is natural in a 2~ system, the cross section is a length. From (25) and (27), one 
obtains the 2~ form of the optical theorem 

U = ( 8 a / k ) ” ’  Imf(0) 

in a form slightly different from that given by Stem and Howard (1967). 

3. Calculation of phase shifts 

To compute phase shifts and to study their variation with energy at low k, it is a simple 
matter now to proceed as in three-dimensional scattering (Schiff 1968). One assumes 
that for r >  a, where a is some distance, V(r)  is negligible, so the solution of (6) is 
(22). On the other hand, for r < a there is one and only one solution of (6) which 
behaves regularly at r = 0, as long V(r) does not have too singular a behaviour (Simon 
1976). Let us denote by RiA(r) that regular solution. The phase shift SA is obtained 
by equating the logarithmic derivatives of the internal and external solutions at r = a. 
So one obtains 

i.e. 

For small energies, ka << 1, one may replace the Bessel and Neumann functions of 
(28), as well as their derivatives, by the first term of their series expansion 

J ( X )  =-(-) 1 x A  +. . . 
A !  2 
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for A # 0, and 

Jo( X )  = 1 J ; ( X )  = -+x 

7T 

One obtains immediately for A # 0 

7~ A R i h ( ~ ) - ~ R ~ , , ( ~ )  
A ! ( A - l ) !  A R i A ( a ) + a R : , ( a )  

tan SA = - 

One sees in (29) that for small k, SA (k) behaves like kZA, and this is nothing less than 
the standard result for 3~ where S I X  k2'+l, if one remembers the correspondence law 
(8). However, for A =0,  one gets 

7T Rlo(a) 
2 R:o(a) In( C1ka/2) - R , o ( a ) / a  ' 

tan tio = - 

In this formula it is clear that, when k + 0 

lim tan So = 0 
k-0 

but this is not enough to make the cross section finite. If one writes, from (30), 

by insertion into (27), one obtains 

7rL 

(T = k[ln( Clka/2)l2 

which means that the scattering cross section for a potential of finite range diverges 
when the energy of the incident particle goes to zero. Of course, the above calculation 
is not a true demonstration valid for any potential, but one can hardly imagine a 
mechanism where the extension of the range of the potential would decrease the cross 
section. 

The method used to find (31) is nothing less than the one used by Landau and 
Lifshitz to obtain the result quoted in the introduction. They fit the logarithmic 
derivative of the inner and outer solution for the ( A  = 0) Schrodinger equation at a 
point a such that U( r )  = 0 for r > a. Using the asymptotic expression of KO( Kr), they 
obtain 

A = l n ( C , ~ a / 2 ) S ( a )  (32) 
where the notation 

S(x) = U(r) r  d r  I: (33) 

has been introduced. 

(32), which is consistent with the assumption that U(r )  is zero for r >  a. 
Landau and Lifshitz now obtain the quoted result by replacing S ( a )  by S(m) in 
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4. The T matrix formalism 

Both results (31) and (33), about scattering and bound states, should be related: by a 
Breit-Wigner mechanism, the bound state at roughly zero negative energy is responsible 
for the diverging cross section at zero positive energy. That will be shown by using 
the Noyes variant of the T matrix expansion in powers of the strength of the potential 
(Noyes 1965). It has already been used by Patil (1980) to demonstrate the bound-state 
result for circular potential. 

We shall use, for the Green operator computed above in the r representation, the 
notation 

1 
E’+iE - k: GE(kl)  =(k l (G0(E‘+k) lk l )=  

and start from the Lippmann-Schwinger equation for the T matrix: 
T ( E ‘ )  = g U +  g U G E ( E ’ )  T(  E ’ )  (34) 

when the potential energy operator has been multiplied by g, a coupling factor put 
equal to 1 at the end of the calculations. 

Now the Noyes method consists in writing the matrix elements of T as a diagonal 
element multiplied by an off-diagonal coefficient, i.e. 

(kl T(E’)lq) = h ( E ’ ;  k, 4)(41 T(E’)Id. (35) 
Introducing (35) into (34) one obtains from the diagonal part of (34) 

This equation introduced into the off-diagonal part of (34) gives the Fredholm equation 
for h, i.e. 

This equation gives a natural expansion of h in powers of g and thus allows a 
calculation of T as a function of g,  which is not the Born expansion, so it is able to 
be used near bound states. Here we shall only need to write (36) in the form 

(38) (41 T(E‘)lq) = g(9l Ulq)lD,(E’) 
and to keep the first order in g for h, i.e. to keep only the first two terms in 

To find a bound state, one must look for a pole of the S or of the T matrix, i.e. a 
zero of D,(E). To find it, one must compute the integral 

I(E’9 4 )  = c (91 Ulk)(klGO(E’+i&)lk)(kl Ulq) 
k 

=(q)UG,(E’+i&)Ulq) 

= d2rl d2r2 exp(-iq* rl) U ( r l ) G o ( E ’ ;  Ir, - r21) U(r2)  exp(iq. r2).  

(40) 
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With the use of the addition formula (16'), and of 

one finds, if the potential has circular symmetry 

and we can, as we are interested only in small potentials and small negative energies, 
replace the modified Bessel functions and the Macdonald functions by the first terms 
of their expansions. For m # 0, the K"' term of the r2 integral coming from I, will be 
compensated by a K - ,  term coming from K ,  in the rl integral. The only term with 
a K dependence comes from m = 0, which has a logarithmic dependence as usual. 
Furthermore for m # 0, the ry term coming from I, lowers the r2 integral for small r2 
and the r;" term coming from K ,  lowers the rl integral for large r,. So one is justified 
in keeping the only diverging term, the m = 0 one, and, with the notation (33), one 
can write 

I ( q )  = 4 lom r d r  exp(iqr) U(r )S( r )  In( C , ~ r / 2 ) .  

One can set q = 0, as the bound-state condition does not need to be q dependent, 
and compute I ( 0 ) .  Writing rU(r)  = S'(r), integrating by parts and neglecting the term 
without In KU,  one writes 

I ( 0 )  = 2TS(u)2 ln(C,Ka/2) (42) 

which is to be introduced in the expression (39) of DA. As 

(41 Ulq) = 2~ Iom V(r) r  d r  = 27rS(m) = 2 ~ S ( a )  (43) 

the bound-state condition becomes 

D ( E )  = 1 - S ( U )  ln(C,Ku/2) = 0 (44) 

i.e. the Landau and Lifshitz result (32). 
The same calculation can be done for positive energies, using the Green function 

(12) for positive energies. The algebra is the same, K ,  being replaced by firH,!,,, I, 
by J,. One gets at the end 

(45) I(O) = ~ T S ( U ) '  In( c1ka/2)  

the analytic continuation of (32). For low energy, small k, this term is the only one 
to be kept in D,(E) and taking (43) into account, (38) becomes 
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Now the ratio of off-diagonal to diagonal terms of the T matrix is, when keeping 
only the first term in (37), proportional to 

Iom d2r  exp[i( kl - k,) r ]  U (  r )  

where both phase factors are equal to unity in the area where U is not negligible, 
because we are interested only in low enough energies. Of course, this means that at 
low energy only w scattering plays a role. 

As (20) can be written 

it is now straightforward by using (45) to compute 

which is the result (31), already obtained more simply. 

potentials. Starting from (40), one writes 
This T matrix method can be used to generalise those results to non-circular 

m 

U ( r )  = U(r, e) = C V,(r) exp(ip8) 
p=--m 

(47) 

which is nothing else than (2a) in reduced units. For bound states, E <O, one gets, 
instead of (41), the expressions 

I ( q )  = -’ , Iom rl dr1 Jn+n,(qr,)U,(rI)Km(Kr1) 
r m.n,n 

@+’ 

x 1 exp[i(m+p-n’)81]del J exp[i(n’-p’-m)621d62 
0 0 

= - 4 r  c Iom rl drl J(n+m+p)(qrI) Up(rl)Km(Krl) 
mn+ 

x {: r2 dr2 ~m+p(qr2) ~~(r2)1m(Kr2) 

and in this expression one can see that for small K the K-, power from K ,  and the 
K”’ power from I, compensate. The only K dependence will come from the KO term 
and will be logarithmic. As for the circularly symmetric case, replacement of K by k, 
of K, by i i r H L  and of I, by J ,  conserves the logarithmic singularity. So both the 
bound-state result and the scattering singularity do not need the circular symmetry to 
be observed. 
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5. Conclusion 

The main applications of this result are in situations where the energy is very small, 
i.e. to low-temperature systems. One is the behaviour of two hydrogen atoms trapped 
on a He film (Bashkin 1980, Edwards 1982, Papoular 1983). The existence of a bound 
state for any small attractive potential is assumed to enhance the recombination of 
atomic hydrogen as observed by Silvera and Walraven (1981). A generalisation of the 
T matrix calculation to inelastic processes could explain the enhanced recombination; 
the divergent cross section should have an enhancing effect, even if, as has been 
suggested by Edwards, the interaction potentials were not attractive. 

A second application is rather formal, being the singularity of the conductivity 
behaviour in disordered two-dimensional systems. It is well known (Abrahams et al 
1979) that d = 2 is the critical dimension for localisation and this is a result of a simple 
renormalisation group argument. It has been shown that this problem of localisation 
is equivalent to solving a Bethe-Salpeter equation in the electron-electron channel 
around k + k ' =  0 (Altshuler et a1 1982, Economou and Soukoulis 1983) and this is 
equivalent to solving a one-particle problem; the fact that the potential is to be 
determined self-consistently from its solution (Vollhardt and Wolfle 1980) does not 
change the formal results derived above. 

One extension of the T matrix calculation is to be done in further work. It is to 
introduce internal degrees of freedom of the incident particle, either to take into 
account spin effects and spin-orbit coupling which is known to have an important 
effect in localisation problems (Hikami et al 1980), or to describe the fact that there 
may be some different levels due to the potential perpendicular to the 2~ systems 
described above (Ando et al 1982). In particular, one should probe the Bashkin 
criterion for the application of 2~ bound-state theory (Bashkin 1980) that the radius 
of the bound state should be bigger than the physical width of the slab and find the 
analogous criterion for scattering. 
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